Membrane roughness as a sensitive parameter reflecting the status of neuronal cells in response to chemical and nanoparticle treatments
نویسندگان
چکیده
BACKGROUND Cell membranes exhibit abundant types of responses to external stimulations. Intuitively, membrane topography should be sensitive to changes of physical or chemical factors in the microenvironment. We employed the non-interferometric wide-field optical profilometry (NIWOP) technique to quantify the membrane roughness of living neuroblastoma cells under various treatments that could change the mechanical properties of the cells. RESULTS The membrane roughness was reduced as the neuroblastoma cell was treated with paclitaxel, which increases cellular stiffness by translocating microtubules toward the cell membranes. The treatment of positively charged gold nanoparticles (AuNPs) showed a similar effect. In contrast, the negatively charged AuNPs did not cause significant changes of the membrane roughness. We also checked the membrane roughness of fixed cells by using scanning electron microscopy (SEM) and confirmed that the membrane roughness could be regarded as a parameter reflecting cellular mechanical properties. Finally, we monitored the temporal variations of the membrane roughness under the treatment with a hypertonic solution (75 mM sucrose in the culture medium). The membrane roughness was increased within 1 h but returned to the original level after 2 h. CONCLUSIONS The results in the present study suggest that the optical measurement on membrane roughness can be regarded as a label-free method to monitor the changes in cell mechanical properties or binding properties of nanoparticles on cell surface. Because the cells were left untouched during the measurement, further tests about cell viability or drug efficacy can be done on the same specimen. Membrane roughness could thus provide a quick screening for new chemical or physical treatments on neuronal cells.
منابع مشابه
Pore surface fractal dimension of sol-gel derived nanoporous SiO2-ZrO2 membrane
In this work, SiO2 –ZrO2 mixed oxides was prepared by the polymeric sol–gel route. The characterization of pore structure, which determines the permeation process of membrane, is of great importance. So far, most investigations have focused on such pore structure as specific surface area and pore size distribution, but the surface fractal, the important parameter reflecting the roughness of por...
متن کاملWild Type p53 Gene Transfer Increases Chemosensitivity and Apoptotic Response of PANC-1 Pancreatic Tumor Cell Line
The effect of p53 gene therapy on chemosensitivity and apoptotic response of PANC-1 tumor cells, which express high amount of mutant p53, to cancer chemotherapeutic agents of Etoposide and Doxorubicin was investigated. Comparison of the chemosensitivity of PANC-1 cells to its wild type p53 transfectants showed that wt-p53 expressing transfectants are more sensitive to both Etoposide and Doxorub...
متن کاملStatistical Analysis and Optimization of Factors Affecting the Surface Roughness in UVaSPIF Process Using Response Surface Methodology
Ultrasonic vibration assisted single point incremental forming (UVaSPIF) is based on localized plastic deformation in a sheet metal blank. It consists to deform gradually and locally the sheet metal using vibrating hemispherical-head tool controlled by a CNC milling machine. The ultrasonic excitation of forming tool reduces the vertical component of forming force. In addition, application of ul...
متن کاملHigh-Sensitive and Selective Liquid Membrane Electrode for Direct Determination of Trace Amounts of Chromium
N-(2H-[1,2,4]thiadiazolo[2,3-a]pyridine-2-ylidene)benzamide was used as a selective sensing material in the PVC membrane to construction of a new chromium ion selective electrode. This liquid membrane electrode worked well with a Nernstian response of 19.7 ±0.4 mV decade-1 of Cr(III) in a wide dynamic concentration range of 8.0× 10-6-1.0×10-1 M. The electrode had relatively short response time ...
متن کاملFabrication and Modification of Thin-Film Composite Hollow Fiber NF Membranes
This study focuses on the preparation and modification of a thin-film composite (TFC) hollow fiber polyamide membrane fabricated by the interfacial polymerization of Piperazine (PIP) and trimesoyl chloride (TMC) on a porous polysulfone substrate. The effects of triethylenetetramine (TETA) and silica nanoparticles (SiO2) contents in the aqueous phase (as the additives) on the morphology and perf...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 14 شماره
صفحات -
تاریخ انتشار 2016